

100GBASE-LR4 & OTU4 10km CFP Optical Transceiver GCF-S101-LR4C

Features

- ✓ Hot-pluggable CFP form factor
- √ 4 channels full-duplex transceiver module
- ✓ Supports 111.8Gb/s aggregate bit rate
- √ 4 channels DFB-based LAN-WDM cooling transmitter
- √ 4 channels PIN ROSA
- √ 9W maximum power dissipation
- ✓ Maximum link length of 10km on SMF
- ✓ Duplex LC receptacle
- ✓ Built-in digital diagnostic functions
- ✓ Operating case temperature range: 0 to 70°C
- ✓ Single 3.3V power supply
- ✓ RoHS-6 compliant (lead free)

Applications

- √ 100GBASE-LR4 100G Ethernet
- ✓ OTN OTU4 applications

Description

The Gigalight 100GBASE-LR4 & OTU4 10km CFP optical transceiver, 100G CFP LR4/OTU4 (GCF-S101-LR4C) is designed for use in 100-Gigabit Ethernet and OTN links up to 10km on Single Mode Fiber (SMF). It is compliant with the CFP MSA, IEEE 802.3ba 100GBASE-LR4, and OTU4 standards. Digital diagnostics functions are available via an MDIO interface, as specified by the CFP MSA. The module converts 10-lane electrical data streams to 4-lane optical output signal and 4-lane optical input signal to 10-lane electrical data streams. This 10-lane electrical signal is fully compliant with 802.3ba CAUI specification and allows FR4 host PCB trace up to 25cm. The high-performance cooled LAN-WDM EML transmitter and high-sensitivity PIN receiver provide superior performance for 100-Gigabit Ethernet applications up to 10km links.

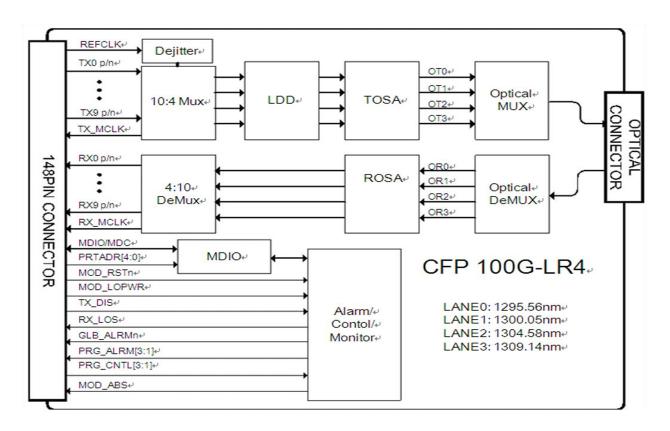


Figure 1: Module Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{cc}	-0.5	3.6	V
Storage Temperature	Ts	-40	85	°C
Case Operating Temperature	Tc	-5	75	°C
Humidity (non-condensing)	Rh	5	85	%
Receiver Damage Threshold (each lane)	P _{dag}	5.5		dBm

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Supply Voltage	V _{cc}	3.2	3.3	3.4	V
Operating Case Temperature	T _c	0		70	°C
Data Rate			103.125	111.8	Gb/s

Data Sheet

Products Characteristics (tested under recommended operating conditions)

Products Character				·		
Parameter	Symbol		Min	Typical	Max	Notes
	Voltage S	upply E	lectrical C	haracteristics		
Supply Current Tx / Rx	I _{cc}	Α			3	1
Power Supply Noise	V _{rip}				2%	DC-1MHz
11.7	·				3%	1-10MHz
Dissipation Class2	Pw	W			9	
Low Power Dissipation	P _{low}	W			2	
Inrush Current n 2	I _{inrush}	mA/usec			50	
Turn-off Current Class2	I _{turnoff}	mA/usec	-50			
	Different :	Signal E	lectrical C	haracteristics		
Single Ended Data Input Swing		mV	55		525	
Single Ended Data Output Swing		mV	180		385	
Differential Signal Resistance	Output	Ω	80		120	
Differential Signal Resistance	Input	Ω	80		120	
	3.3V LVC	MOS EI	ectrical Cl	naracteristics		
Input High Voltage	3.3V _{IH}	V	2.0		Vcc+0.3	
Input Low Voltage	3.3V _{IL}	V	-0.3		0.8	
Input Leakage Current	3.31 _{IN}	uA	-10		10	
Output High Voltage	3.3V _{OH}	V	V _{cc} -0.2			I _{OH} =100uA
Output Low Voltage	3.3V _{OL}	V			0.2	I _{OL} =100uA
Pulse Width of Control Pin Signal	T_CNTL	us	100			
	1.2V LVC	MOS EI	ectrical Ch	naracteristics		
Input High Voltage	1.2V _{IH}	V	0.84		1.5	
Input Low Voltage	1.2V _{IL}	V	-0.3		0.36	
Input Leakage Current	1.2I _{IN}	uA	-100		100	
Output High Voltage	1.2V _{OH}	V	1.0		1.5	
Output Low Voltage	1.2V _{OL}	V	-0.3		0.2	
Output High Current	1.2I _{OH}	mA			-4	
Output Low Current	1.2I _{OL}	mA	4			
Input Capacitance	Ci	pF			10	
Op	tical Tran	smitter (Character	istics (each lane)		
Signaling Rate @100GbE				25.78125+/-100ppm		
Signaling Rate @OTU4		Gb/s		27.95249+/-20ppm		
	λ1		1294.53	1295.56	1296.59	
	λ2		1299.02	1300.05	1301.09	
Wavelength Range	λ3	nm	1303.54	1304.58	1305.63	
	λ4		1308.09	1309.14	1310.19	
Side Mode Suppression Ratio	SMSR	dB	30			
Total Average Laurah Dawa	Б	حال			10.5	@100GbE
Total Average Launch Power	Pt	dBm			8.9	@OTU4
Average Loureh Dows-2	В	dD:	-4.3		4. 5	@100GbE
Average Launch Power ²	Pa	dBm	-2.5		2.9	@OTU4
Optical Modulation Amplitude	OMA	dBm	-1.3		4.5	3

Optical Interconnection Design Innovator

Transmitter and Dispersion	TDP	dB			2.2	@100GbE
Penalty	IDP	UD			1.5	@OTU4
Average Launch Power of Off Transmitter	P _{off}	dBm			-30	
Extination Datie	ГР	40	4			@100GbE
Extinction Ratio	ER	dB	7			@OTU4
Channel Power Difference		dB			5	
RIN20 OMA		dB/Hz			-130	
Optical Return Loss Tolerance	T _{RL}	dB			20	
Transmitter Reflectance	R⊤	dB			-12	4
Eye Diagram		С	ompliant with	n IEEE 802.3ba-2010/G.	959.1)	
C	ptical Red	eiver C	haracteris	tics (each lane)		
Receive Rate		Gb/s		25.78125+/-100ppm		@100GbE
Noocive Nate		Gb/S		27.95249+/-20ppm		@OTU4
	λ1		1294.53	1295.56	1296.59	
	λ2		1299.02	1300.05	1301.09	
Four Lane Wavelength Range	λ3	nm	1303.54	1304.58	1305.63	
	λ4		1308.09	1309.14	1310.19	
Overload Input Optical Power	P _{max}	dBm	4.5			5
Total Input Optical Power	Pt	dBm			8.9	@OTU4
Average Receive Power ⁶	Pin	dBm	-10.6		4.5	@100GbE
Average Receive Fower	FIII	ubili	-8.8		2.9	@OTU4
Receive Power in OMA	PinOMA	dBm			4.5	
Difference in Receive Power		dBm			5.5	
Receiver Sensitivity in OMA	Pmin	dBm			-8.6	@100GbE ⁷
receiver censilivity in civil	1 111111	dbiii			-10.3	@OTU4 ⁸
Stressed Receiver Sensitivity in OMA ^{9, 10}		dBm			-6.8	
Los Assert	LOSA	dBm	-20		-15	
Los De-assert	LOS _D	dBm			-14	
Los Hysteresis	LOS _H	dBm	0.5			
Chromatic Dispersion		Ps/nm	-28.5		+9.5	
Maximum Reflectance		dB			-26	
Delay Group Differential		ps			8	

Notes:

- 1. The supply current includes CFP module's supply current and test board working current.
- 2. Each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 3. Even if the TDP < 1dB, the OMA (min) must exceed this value.
- 4. Defined looking into the transmitter.

Data Sheet

GigalightOptical Interconnection Design Innovator

- 5. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.
- 6. Each lane (max) for 100GBASE-ER4 is larger than the 100BASE-ER4 transmitter value to allow compatibility with 100BASE-LR4 units at short distances. Each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 7. Each lane (max) is informative.
- 8. Measured with PRBS 2³¹-1 for BER=10⁻⁵. The BER for the OTU4 application is required to be met only after FEC has been applied.
- 9. Measured with conformance test signal at TP3 for BER=10⁻¹²
- 10. Conditions of stressed receiver sensitivity test: vertical eye closure penalty for each lane is 1.8dB; stressed eye J2 jitter for each lane is 0.3UI; stressed eye J9 jitter for each lane is 0.47UI.

Hardware Control Pins

The CFP module supports real-time control functions via hardware pins.

Pin#	Symbol	Description		Logic	Н	L	Pull-up/down ^{1, 2}
30	PRG_CNTL1	Programmable Control 1 MSADefault: TRXIC_RST n , TX&RX ICs reset, "0":reset; "1"	I	3.3V LVCMOS	per CFF) MSA	Pull-Up
31	PRG_CNTL2	Programmable Control 2 MSA Default : Hardware Interlock LSB			Pull-Up		
32	PRG_CNTL3	Programmable Control 3 MSA Default: Hardware Interlock MSB	I	3.3V LVCMOS			Pull-Up
36	TX_DIS	Transmitter Disable	I	3.3V LVCMOS	Disable	Enable	Pull-Up
37	MOD_LOPW R	Module Low Power Mode	ı	3.3V LVCMOS	Low Power	Enable	Pull-Up
39	MOD_RSTn	Module Reset (Invert)	I	3.3V LVCMOS	Enable	Reset	Pull-Down

Note:

- 1. Pull-Up resistor (4.7k to 10k Ohm) is located within the CFP module.
- 2. Push-Down resistor (4.7k to 10k Ohm) is located within the CFP module.

Optical Transceivers Data Sheet

Optical Interconnection Design Innovator

Hardware Alarm Pins

The CFP module supports alarm hardware pins.

Pin#	Symbol	Description		Logic	Н	L	Pull-up/down ^{1, 2}
33	prg_alrm1	Programmable Alarm 1 MSA Default:HIPWR_ON	0	3.3V LVCMOS	Active H		
34	PRG ALRM 2	Programmable Alarm 2MSA default:MOD_READY , Ready State has been reached	0	3.3V LVCMOS			
35	PRG ALRM3	Programmable Alarm 3 MSA Default: MOD FAULT	0	3.3V LVCMOS			
38	MOD_ABS	Module Absent	0	3.3V LVCMOS	Absent	Present	Pull-Down
40	RX_LOS	Receiver Loss of Signal	0	3.3V LVCMOS	Loss of Signal	ОК	

Note:

- 1. Pull-Up resistor (4.7k to 10k Ohm) is located within the CFP module.
- 2. Push-Down resistor (4.7k to 10k Ohm) is located within the CFP module.

Management Interface Pins (MDIO)

The CFP Module supports alarm, control and monitor functions via an MDIO bus.

Pin#	Symbol	Description	I/O	Logic	Н	L	Pull-up/down						
41	GLB ALRMn	Global Alarm	ı	3.3V	Absent	Alarm	Pull-Down						
7.	_			LVCMOS		7 (101111							
47	MDIO	Management Data Input Output	1/0	1.2V									
47	WIBTO	Bi-Directional Data	170	LVCMOS									
48	MDC	MDIO Clock	1	1.2V									
40	WIDO	WETE Clock	•	LVCMOS									
46	MDIO Physical Port address		PRTADR0 MDIO Physical Port address	1	1.2V								
40		bit0		bit0		LVCMOS							
45	PRTADR1 MDIO Physical Port addre		1	1.2V									
45	TRIABILI	bit1		bit1		bit1		bit1		LVCMOS			
44	PRTADR2	MDIO Physical Port address	1	1.2V	per M	IDIO							
44	TRIABILE	bit2		LVCMOS	docum	ent[5]							
42	PRTADR3 MDIO Physical Port address		1	1.2V									
43	TATABLE	bit3		LVCMOS									
40	PRTADR4	MDIO Physical Port address	1	1.2V									
42	TRIADIC	bit4	'	LVCMOS									

Data Sheet

Hardware Signaling Pin Timing Requirements

Parameter	Symbol	Min	Max	Unit	Notes& Conditions
Hardware MOD_LOPWR Assert	t_MOD_LOPW R_Assert		1	ms	Application specific may depend on current state condition when signal is applied.
TX Disable Assert Time	T_off		100	us	

Electrical Characteristics

Reference Clock Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Impedance	Z _d	80	100	120	Q	
Frequency			161.1328125/ 644.53125		MHz	1/64 or 1/16 of electrical lane rate
Francisco Ctability	∆f	-100		100	nnm	For Ethernet applications
Frequency Stability		-20		20	ppm	For Telecom applications
Output Differential Voltage	V_{DIFF}	400		1200	mV	Peak to Peak Differential
RMS Jitter1-2	0			10	ne	Random Jitter Over frequency
RIVIS JILLET 1-2	Ŭ			10	ps	band of 10KHz <f<10mh< td=""></f<10mh<>
Clock Duty Cycle		40		60	%	
Clock Rise/Fall Time	tr/f	200		1250	ne	1/64 of electrical lane rate
10%/90%	4/1	50		315	ps	1/16 of electrical lane rate

Note:

- 1. The term "40GBASE_FR" is the 40GbE serial optical interface in the task force phase at IEEE-SA at the time of this publication. Also, 1/16 of optical lane clock is recommended for TX MCLK and RX MCLK.
- 2. Multi-protocol modules are recommended to adopt the clock rate rate used in Telecom applications.

Optional Transmitter and Receiver Monitor Clock Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes& Conditions
Impedance	Zd	80	100	120	Q	
Frequency					MHz	1/8 of Network lane rate
Output Differential Voltage	V_{DIFF}	400		1200	mV	Peak to Peak Differential
Clock Duty Cycle		40		60	%	

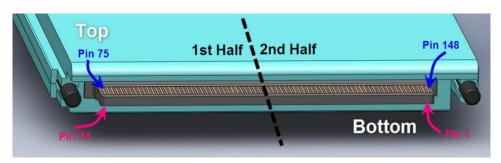


Figure 2. Pad Layout

Optical Interconnection Design Innovator

Mechanical Dimensions

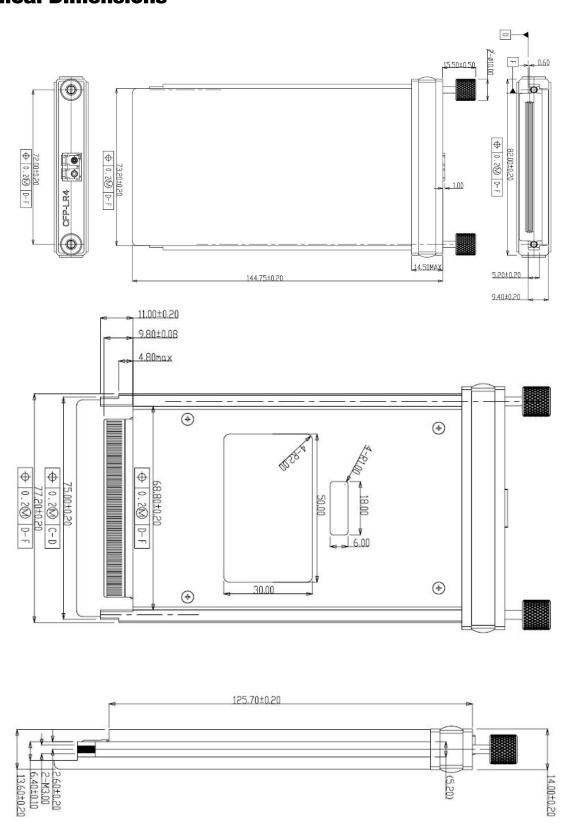


Figure 3. Mechanical Specifications

Optical Transceivers Data Sheet

Ordering Information

Product Description	Part Number
CFP LR4, 111.8Gb/s, 1310nm, 10km, SMF, LC	GCF-S101-LR4C

References:

- 1. 100GBASE-LR4 100G Ethernet
- 2. OTN OTU4
- 3. CFP MSA

ESD:

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Laser Safety:

This is a Class 1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

Important Notice:

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by GIGALIGHT before they become applicable to any particular order or contract. In accordance with the GIGALIGHT policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of GIGALIGHT or others. Further details are available from any GIGALIGHT sales representative.

E-mail: sales@gigalight.com
Official Site :www.gigalight.com

Optical Interconnection Design Innovator

Revision History

Revision	Level	Date	Description
V0	Preliminary	Feb 2017	Advance Release.