
Black phosphorus as saturable absorber for the 
Q-switched Er:ZBLAN fiber laser at 2.8 μm 

Zhipeng Qin,1 Guoqiang Xie,1,4 Han Zhang,2 Chujun Zhao,3,5 Peng Yuan,1 Shuangchun 
Wen,3 and Liejia Qian1 

1Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, IFSA 
Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China 

2SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of 
Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic 

Engineering, Shenzhen University, Shenzhen 518060, China 
3Key Laboratory for Micro-/Nano-OptoelectronicDevices of Ministry of Education, School of Physics and 

Electronics, Hunan University, Changsha 410082, China 
4xiegq@sjtu.edu.cn 

5cjzhao@hnu.edu.cn 

Abstract: Black phosphorus, a newly emerged two-dimensional material, 
has attracted wide attention as novel photonic material. Here, multilayer 
black phosphorus is successfully fabricated by liquid phase exfoliation 
method. By employing black phosphorus as saturable absorber, we 
demonstrate a passively Q-switched Er-doped ZBLAN fiber laser at the 
wavelength of 2.8 μm. The modulation depth and saturation fluence of the 
black phosphorus saturable absorber are measured to be 15% and 9 μJ/cm2, 
respectively. The Q-switched fiber laser delivers a maximum average power 
of 485 mW with corresponding pulse energy of 7.7 μJ and pulse width of 
1.18 μs at repetition rate of 63 kHz. To the best of our knowledge, this is the 
first time to demonstrate that black phosphorus can realize Q-switching of 
2.8-μm fiber laser. Our research results show that black phosphorus is a 
promising saturable absorber for mid-infrared pulsed lasers. 
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1. Introduction 

Rapid progress has been made on two-dimensional (2D) materials represented by graphene, 
topological insulators (TIs) and transition metal dichalcogenides (TMDCs) in recent years [1–
6]. Due to their broadband absorption, ultrafast carrier dynamics and planar characteristics [7, 
8], they have been regarded as the next-generation optoelectronics devices such as 
photoelectric detector, field-effect transistor, optical modulator, and so on [9–11]. So far, Q-
switched and mode-locked lasers have been frequently reported with 2D materials as 
saturable absorber (SA) [12–17]. In the family of 2D materials, graphene is characterized by 
zero-bandgap which makes it have extremely broadband optical response from visible to mid-
infrared (mid-IR) band [12]. However, its weak absorption results in a low modulation depth 
[15]. TIs are characterized by a full insulating gap in the bulk and gapless edge or surface 
states and TI SAs mainly work at 1, 1.5 and 2 μm wavelength at present [14, 16, 17]. TMDCs 
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such as MoS2 and WS2 generally have large bandgap (1~2 eV) [13, 18], which limits their 
applications in the mid-IR wavelength. 

Black phosphorus (BP), a newly emerged 2D material, has gained wide attention recently. 
Up to now, it has been reported that BP can be applied in sensor, field-effect transistor and 
solar cell [19–21]. Multilayer BP has a similar structure with bulk graphite. In a single layer, 
each phosphorus atom is covalently bonded with three adjacent phosphorus atoms to form a 
puckered honeycomb structure, and different layers are stacked together by van der Waals 
interaction [22]. Multilayer BP has a direct energy bandgap structure, with bandgap from 0.3 
eV to 2 eV depending on the number of layers [23]. Naturally, BP has the common properties 
of 2D materials such as wideband absorption, ultrafast carrier dynamics and planar 
characteristic [24]. The bandgap-controllable BP SA can be fabricated by mechanical 
exfoliation method or liquid phase exfoliation (LPE) method [25, 26]. So far, the saturable 
absorption of BP has been demonstrated experimentally by Q-switched or mode-locked lasers 
from 0.6 to 2.0 μm wavelength [27–30]. However, there is no report on BP for Q-switched 
lasers at the wavelength of 2.8 μm. In this spectral regime, passively Q-switched fiber lasers 
have been achieved recently by graphene, TI, Fe:ZnSe, and semiconductor saturable absorber 
mirror (SESAM) [31–34]. Compared with BP, the zero-bandgap structure of graphene 
weakens the absorption at long wavelength, and TI, Fe:ZnSe, and SESAM need complex 
fabrication process. 

Here we experimentally demonstrate that BP SA is also feasible at the wavelength of 2.8 
μm. The multilayer BP, prepared by LPE method, was coated on a gold-coated mirror as 
reflection-type saturable absorber mirror (SAM). By employing the fabricated BP-SAM, we 
demonstrated a passively Q-switched Er-doped ZBLAN fiber laser at 2.8 μm. The Q-switched 
fiber laser delivered a maximum average power of 485 mW with corresponding pulse energy 
of 7.7 μJ and pulse width of 1.18 μs at repetition rate of 63 kHz. Due to the strong water 
absorption in body tissue for 3 μm laser, 3-μm pulsed laser is very useful in medical 
applications such as skin ablation, dentistry and cataract, etc. 

2. Preparation and characterization of BP SA 

In this work, the multilayer BP was prepared by LPE method, which has been widely used to 
obtain 2D nanomaterials from layered bulk crystal. Firstly, we mixed bulk black phosphorous 
(30 mg) with N-Methyl pyrrolidone (NMP) solution (30 mL) together and sonicated at 40 
kHz frequency and 300 W power for 10 hours. Then, the supernatant liquor was obtained after 
centrifuging at 1500 rpm for 10 min. The detailed characterization of transmission electron 
microscopy (TEM) and atomic force microscopy (AFM) with same BP sample was performed 
in [26], which suggested that the multilayer BP flakes had a thickness distribution from ~5 
nm-20 nm, and more than 51% of the flakes had an thickness between 15 nm and 20 nm [26]. 
Since the bandgap of BP follows a power law Eg≈(1.7/n0.73 + 0.3) eV (n is the number of 
layers) [23], the bandgap of the multilayer BP should be larger than 0.432 eV, corresponding 
to an optical wavelength upper limit of ~2.9 μm. In the experiment, the as-prepared BP-NMP 
solution (supernatant liquor) was dropped onto gold-coated mirror and dried in cabinet for 
laser experiment. In combination with the ultra-broadband gold-coated reflective mirror, the 
fabricated BP-SAM can operate in a broad spectral range (<2.9 μm). It is noticed that BP 
flakes on the mirror are not uniform according to the TEM image [26]. The reflectivity of the 
BP-SAM was measured to be ~79% with a 2.8 μm continuous-wave (CW) laser. The 
saturable absorption of the BP-SAM was measured with a home-made mode-locked fiber 
laser at the wavelength of 2.8 μm, as shown in Fig. 1. The mode-locked laser delivered a 
maximum average output power of 1.05 W with a repetition rate of 22.56 MHz and pulse 
duration of 25 ps. By changing the incident fluence, the reflectivity of BP-SAM increased 
from 79% to 91%. The measurement shows that the BP-SAM has a modulation depth of 15% 
and saturation fluence of 9 μJ/cm2 at 2.8 μm. 
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Fig. 1. The saturable absorption measurement of BP-SAM at 2.8 μm wavelength. 

3. Experimental setup 

The schematic of the Q-switched fiber laser is shown in Fig. 2. The commercialized 976-nm 
laser diode (BTW, Beijing) was adopted as the pump source with maximum output power of 
30 W, a core diameter of 105 μm and numerical aperture (NA) of 0.15. After collimated by a 
biconvex lens (F1 = 50 mm), the pump light was focused into first cladding configuration by 
the second biconvex lens (F2 = 100 mm). The 45° placed quartz mirror was antireflectively 
coated for pump light (T>95%) and highly reflectively coated for laser (R>99%). The double-
cladding Er:ZBLAN fiber (FiberLabs, Japan) has a length of 4 m and Er-doping concentration 
of 6 mol.%. The core diameter of Er:ZBLAN fiber is 30 μm with NA of 0.12. The first 
cladding configuration has a diameter of 300 μm and NA of 0.5, which guarantees efficient 
coupling of pump light. The pumping end facet of fiber was cut perpendicular to the fiber 
axis, with a Fresnel transmission of 96% as output coupler. At the tail end of fiber, it was cut 
with an angle of 8° to avoid parasitic oscillation. Then, two highly-reflective plane-convex 
mirrors (M1 and M2) with radii of curvature of 100 mm and 50 mm respectively, were used 
to reimage the end face of fiber onto BP-SAM. The laser mode on the BP-SAM was half of 
fiber core diameter. 

 

Fig. 2. The schematic of the passively Q-switched Er:ZBLAN fiber laser. BP-SAM, black 
phosphorus saturable absorber mirror. 

4. Experimental results and discussion 

With the laser setup of Fig. 2, CW laser was generated at the threshold of incident pump 
power of 1.4 W. When the incident pump power increased to 2.2 W, the fiber laser started Q-
switching operation. In the experiment the pulse train was captured by an infrared HgCdTe 
detector with a specified rise time of < 2 ns and working wavelength range of 1~9 μm (VIGO 
System model PCI-9), and displayed in a digital oscilloscope with 500-MHz bandwidth 
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(Tektronix, DPO3054). The typical Q-switched pulse trains and pulse profiles are shown in 
Fig. 3 for different pump powers. At the Q-switching threshold, the fiber laser had an average 
output power of 145 mW, pulse width of 2.1 μs and repetition rate of 39 kHz. The Q-
switching operation can be maintained when the incident pump power increased continuously. 
For incident pump power of 3.8 W, the average output power reached to 320 mW with a pulse 
width of 1.35 μs and repetition rate of 54 kHz. The shortest pulse width of 1.18 μs was 
obtained with an average output power of 485 mW and repetition rate of 63 kHz under an 
incident pump power of 5.4 W. In high power operation, the Q-switched pulses show slight 
intensity fluctuation, which may be attributed to BP performance degradation due to excess 
heat. The radio-frequency (RF) spectrum was measured under the maximum output power, as 
shown in the inset of Fig. 3d, which shows a signal-to-noise ratio (SNR) of 35 dB. It was 
worth noting that the position of BP-SAM was a key factor for Q-switching operation. In the 
experiment we carefully optimized the BP-SAM position for achieving the maximum output 
power and Q-switching operation. 

The Q-switched average output power and pulse energy as a function of incident pump 
power is shown in Fig. 4(a). The average output power increased linearly from 145 mW to 
485 mW with a slope efficiency of 10.6%. At the maximum output power of 485 mW in Q-
switched regime, we obtained the maximum pulse energy of 7.7 μJ. Figure 4(b) shows the 
measured repetition rate and pulse width as a function of incident pump power. As expected, 
the repetition rate increased and pulse width decreased as the incident pump power increased. 
The repetition rate increased from 39 kHz to 63 kHz and pulse width decreased from 2.10 μs 
to 1.18 μs while the incident pump power varied from 2.2 W to 5.4 W. In the experiment, no 
Q-switched mode-locking phenomenon was observed. 

 

Fig. 3. (a-c) Q-switched pulse trains at the output powers of 145 mW, 320 mW and 485 mW, 
respectively. (d) Their corresponding pulse profiles and the RF spectrum. 
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Fig. 4. (a) Average output power and pulse energy, (b) Repetition rate and pulse width as a 
function of incident pump power. 

Figure 5 shows the Q-switched pulse spectrum, which was measured by a mid-IR spectral 
analyzer (Ocean Optics, SIR 5000) with a resolution of 0.22 nm. The spectral peak locates at 
2779 nm with a FWHM of 4.6 nm. 

 

Fig. 5. The Q-switched pulse spectrum measured at the maximum output power. 

5. Conclusion 

In conclusion, multilayer BP was fabricated by LPE method and the 2.8 μm Q-switched fiber 
laser was experimentally demonstrated with BP as saturable absorber for the first time. The 
Q-switched fiber laser delivered a maximum average output power of 485 mW with pulse 
energy of 7.7 μJ, pulse width of 1.18 μs and repetition rate of 63 kHz. The BP is of low cost, 
easy fabrication, and variable bandgap, which makes it potential as a broadband saturable 
absorber for pulsed lasers, especially in the mid-IR spectral regime where few saturable 
absorbers can work stably. 
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